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Abstract

We consider H expected utility maximizers that have to share a
risky aggregate multivariate endowment X ∈ RN and address the
following two questions: does effi cient risk-sharing imply restrictions
on the form of individual consumptions as a function of X? Can one
identify the individual utility functions from the observation of the
risk-sharing? We show that when H ≥ 2N

N−1 effi cient risk sharings
have to satisfy a system of nonlinear PDEs. Under an additional rank
condition, we prove an identification theorem.

Keywords: multidimensional risk-sharing, restrictions, identification.

1 Introduction

In [6], Townsend tested restrictions of effi cient risk-sharing in a pure exchange
economy on data from three villages in Southern India. In Townsend’s model,
the risk to be shared between the different agents is unidimensional and
Townsend’s test was based on the idea of comonotonicity: if a risk-sharing
is effi cient then it should be comonotone in the sense that the consumption
of each agent should be nondecreasing in the total resource. In the present
work, we want to address the multivariate case where the resource to be
shared has several dimensions (wheat and meat production for instance) and
we shall see that in this case there are some sharp restrictions on effi cient
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risk sharings that take the form of systems of nonlinear PDEs. We shall
also prove an identification theorem i.e. that under some rank condition the
knowledge of an effi cient risk sharing enables us to reconstruct some sharp
information on individual preferences and Pareto weights.
The idea of comonotonicity has been developed further in a series of pa-

pers. It has been shown to extend to utilities which are not of von Neuman-
Morgenstern type, notably RDU (rank-dependent expected utility) (see [2]),
and to extend to the multivariate setting (see [3]). The framework of the
present work is that of the effi cient risk-sharing of some multidimensional
risky resource X among several expected utility maximizers with strictly
concave and smooth utility functions that are not known to the econometri-
cian. As observed in [3], the first-order condition gives that the consumption
of agent h takes the form Xh = ∇V ∗h (∇V (X)). A first question is whether
such forms entail sharp restrictions on the consumptions Xh as functions of
X, for instance in the form of a system of PDEs. The second issue we shall
address is whether the knowledge of the Xh’s as functions of X enable us
to identify the individual preferences. To be complete, one should also take
into account the economic integration isue i.e. the further requirement that
he functions V ∗h and V should be concave, however, this problem will not be
addressed here.
We make no assumption about risk-sharing within the group, except that

the result is effi cient. So our paper is part of the growing literature on formal
models of effi cient group behavior (see [4] for a survey). This literature con-
siders each group as a black box: inputs (prices, initial endowments) and
outputs (consumption) can be observed but individual allocations cannot.
One can observe aggregate consumption of the group but not the individual
consumption of its members. The problem then is to recover individual con-
sumptions with minimal assumptions on the allocation mechanism within
the box. This minimal assumption is that the allocation mechanism is ef-
ficient i.e. Pareto-optimal. Browning and Chiappori [1] have shown that
this is enough to derive restrictions on aggregate demand, analogous to (but
different from) the classical Slutsky conditions of consumer theory and they
have tested these conditions on microeconomic data.
Another issue to bear in mind is the so-called identifiability problem (see

[4], p.7 for a full discussion): we will not assume that the demand functions
have a particular form (so our model is non-parametric) but we will assume
that they are smooth functions and that we can observe them. Of course, in
any practical situation, one can only observe finitely many values. Proceeding
as if one could observe the full demand function is an intermediate step for
the econometrician. If we can recover the individual demands in that case, it
will be up to him to find the adequate tools to recover the collective demand
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functions from finitely many points. If he cannot, even with that much
information, then clearly he will not be able to do it neither from a finite
amount of data.
The paper is organized as follows. The model is introduced in section 2.

Necessary conditions for a risk-sharing to be effi cient are given in section 3 in
the form of systems of nonlinear PDEs. Section 4 is devoted to identification
issues.

2 The model

Consider H ≥ 2 expected utility maximizing agents that have to share ex
ante a risky multivariate aggregate endowment X that is some (essentially
bounded say) RN -valued random vector with N ≥ 2. Ex-ante, the agents
have to decide on how to share the total resource X between the H agents
in an effi cient way, this leads to the following program1

sup
{
E
( H∑
h=1

λhUh(Xh)
)

:
H∑
h=1

Xh = X
}

(1)

where the λh > 0’s are the Pareto weights and Uh are agents’von Neumann-
Morgenstern utility indices. Assume that the utilities are C2, that D2Uh is
negative definite everywhere and set Vh = λhUh, the solutionX = (X1, · · · , XH)
of (1) can be obtained asXh = Xh(X) where for every x ∈ RN , (X1(x), · · · , XH(x))
solves the sup-convolution problem:

V (x) = sup
{ H∑
h=1

Vh(xh) :
H∑
h=1

xh = x
}
. (2)

The first-order optimality conditions of (2) read as

∇Vh(Xh(x)) = p(x) i.e. Xh(x) = ∇V ∗h (p(x))

V ∗h being the Legendre Transform of Vh so that ∇V ∗h = ∇V −1h and p(x) being
the vector of shadow prices i.e. the multiplier associated to the scarcity
constraint

∑H
h=1 xh = x which can be computed as

p(x) =
( H∑
h=1

∇V ∗h
)−1

(x) = ∇V (x)

1The fact that the Pareto weights are fixed and do not depend on X is precisely justified
by the fact that the agents ex ante make a commitment on an allocation on the contract
curve before the risk is realized.
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so that
Xh(x) = ∇V ∗h

(
∇V (x)

)
, for h = 1, · · · , H. (3)

The issues we shall investigate in the sequel are the following:

• Necessary conditions/restrictions: Given maps

x ∈ RN 7→ (X1(x), · · · , XH(x)) ∈ RN×H

that sum to the identity map, what conditions should they satisfy
if in addition, they come from a risk-sharing problem of the form
(2) (without knowing neither the utility functions Uh nor the Pareto
weights λh)? As seen in (3), each Xh should be the composition of two
gradient maps, the second one being independent of h, we shall see that
when H is large enough (more precisely when H ≥ 2N

N−1) this imposes
that the vector fields Xh’s solve a system of nonlinear PDEs.

• Identification: When the Xh’s are obtained from an effi cient risk-
sharing process, can one recover information about the individual pref-
erences i.e. about the functions Vh = λhUh? We shall see that under
some rank condition, there is identification i.e. the knowldege of indi-
vidual consumptions as functions of the aggregate consumption enables
one to reconstruct the functions Vh.

We shall not address here the issue of suffi cient conditions (which seems
more delicate and which we plan to develop in a subsequent work with the
tools of exterior differential calculus) neither that of economic integration
(i.e. the further requirement that the primitives Vh should be concave, or at
least quasiconcave).

3 Necessary conditions

Before going further, let us set some notations. We denote byMN the space
of N×N real matrices, by A∗ the transpose of A ∈MN , by SN (respectively
ASN) the subspace ofMN consisting of symmetric (respectively antisymet-
ric) matrices and by GLN the linear group of nonsingular matrices. We shall
denote by 〈A,B〉 := tr(A∗B) the usual inner product onMN matrices and
recall that SN and ASN are orthogonal supplementary subspaces for this
inner product. For A ∈ MN we denote by sym(A) its symmetric part i.e.
sym(A) = 1

2
(A + A∗). Finally, given a linear map Q we denote respectively

by R(Q) and N(Q) its range and nullspace.
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3.1 General case

We are given H vector fields X1, · · · , XH that sum to the identity i.e.

H∑
h=1

Xh(x) = x, ∀x ∈ RN (4)

and we wonder whether these Xh can be obtained as a solution of a nonde-
generate risk-sharing problem as in section 2 i.e. can be written as in (3) for
some functions V ∗h and V with a nonsingular Hessian. Taking x ∈ RN (fixed
for the moment), differentiating (3) we get

Fh := DXh(x) = D2V ∗h (∇V (x))D2V (x) (5)

so that in particular each Fh is nonsingular,

H∑
h=1

Fh = IN (6)

and one can find nonsingular and symmetric matrices Sh and S such that

Fh = ShS, ∀h ∈ {1, · · · , H}

which, defining σ := S−1 and Φh(σ) := Fhσ for h = 1, · · · , H and Φ(σ) :=
(F1σ, · · · , FHσ) we may rewrite as Φ(σ) = (S1σ, · · · , Shσ). A necessary
condition for the Fh = DXh’s to satisfy (5) for some Vh and V is then:

there exists σ ∈ SN ∩GLN such that Φ(σ) ∈ SHN . (7)

As we shall see in the next lemma, it is convenient to express (7) in terms
of the linear map L ∈ L(ASH−1N ,SN) defined by:

L(A1, · · · , AH−1) := sym
(H−1∑
h=1

AhFh

)
, ∀(A1, · · · , AH−1) ∈ ASH−1N . (8)

Note that if the matrices Fh are observed, the maps Φ and L are known,
in the sequel, we will derive restrictions on these maps.

Lemma 1 Let σ ∈ SN then the following assertions are equivalent:

1. Φ(σ) ∈ SHN ,

2. σ ∈ R(L)⊥.

Condition (7) is thus equivalent to the fact that R(L)⊥∩GLN 6= ∅ which
in particular implies that L is not surjective.
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Proof. Let σ ∈ SN , σ ∈ R(L)⊥ means that for every (A1, · · · , AH−1) ∈
ASH−1N one has

0 = tr(σ
H−1∑
h=1

AhFh) =
H−1∑
h=1

tr(AhFhσ) = −
H−1∑
h=1

tr(A∗hFhσ) = −
H−1∑
h=1

〈Ah,Φh(σ)〉

which is equivalent to the fact that Φh(σ) ∈ SN for h = 1, · · · , H − 1 but
recalling (6) we also have

ΦH(σ) = (IN −
H−1∑
h=1

Fh)σ = σ −
H−1∑
h=1

Φh(σ) ∈ SN .

This proves the desired equivalence.

We deduce the following restrictions on nondegenerate effi cient risk-sharings:

Theorem 1 If H ≥ 2N
N−1 and x 7→ (X1(x), · · · , XH(x)) is a nondegenerate

effi cient risk-sharing then it solves a system of nonlinear PDEs expressing
the fact that the map L defined by (8) is nonsurjective.

Proof. Since

dim
(
ASH−1N

)
=

(H − 1)N(N − 1)

2
and dim

(
SN
)

=
N(N + 1)

2

the fact that L is nonsurjective entails restrictions on the Jacobian matrices
Fh = DXh as soon as (H − 1)(N − 1) ≥ N + 1 i.e. H ≥ 2N

N−1 . More

precisely, in this case, (7) implies that all N(N+1)
2
× N(N+1)

2
minors of L should

identically vanish: since L depends linearly on the DXh’s this gives a system

of
(

(H − 1)N(N − 1)/2
N(N + 1)/2

)
equations that are homogeneous of degree N(N+1)

2

in the derivatives (DX1, · · · , DXH−1).

Remark. In fact (7) is stronger than the condition that L is not surjective
since it requires R(L)⊥ ∩GLN 6= ∅.

Remark. To obtain restrictions as above, it is important to consider
the whole system Fh = ShS, h = 1, · · · , H. Indeed, each equation Fh =
ShS taken separately only implies that Fh is the product of two symmetric
matrices and according to a theorem of Frobenius (see for instance [5]), any
matrix can be written in such a way.
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Remark. The proportional risk-sharing rule corresponds to the most de-
generate case where L ≡ 0, indeed in this case Fh(x) = αhIN for every x
(where the αh’s sum to 1), so, for every (A1, · · · , AH−1) ∈ ASH−1N one has

L(A1, · · · , AH−1) := sym
(H−1∑
h=1

αhAh

)
= 0.

3.2 Special cases

We now consider some special cases and write explicitly the system of PDEs
that nondegenerate risk-sharings should solve in these cases. These two cases
are the first ones for which effi cient risk-sharing implies some nontrivial re-
strictions namely:

• the case of 4 agents and 2 goods, in this case L can be identified with
an endomorphism of R3 and (X1, X2, X3) should solve one PDE,

• the case of 5 agents and 2 goods, in this case L can be identified with
an element of L(R4,R3) and (X1, X2, X3, X4) should solve a system of
4 nonlinear PDEs.

These two cases also illustrate the general case. In fact, the computations
and arguments below can easily be generalized to larger values ofH andN for
which H ≥ 2N

N−1 : (H,N) = (4, 2) serves as a prototype for the case H = 2N
N−1

whereas (H,N) = (5, 2) serves as a prototype for the case H > 2N
N−1 .

Before studying the examples in details, let us remark that the case H =
2N
N−1 is rather rare, more precisely it consists only of two cases:

Lemma 2 Let H and N be integers larger than 2, then

H =
2N

N − 1
⇐⇒ (H,N) = (4, 2) or (H,N) = (3, 3).

Proof. Assume N ≥ 2 and that N − 1 divides 2N . If N is odd, write
N = 2k + 1 and then 2N

N−1 = 4k+2
2k

= 2k + 1
k
so that k = 1 and then N = 3

and H = 3. If N is even, N − 1 being odd, it follows from Gauss Lemma
that N − 1 divides N so that N = 2 and then H = 4.
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The case H = 4, N = 2
Writing Xh = (X1

h, X
2
h), we have

Fh =

(
∂1X

1
h ∂2X

1
h

∂1X
2
h ∂2X

2
h

)
,

let then

Ah =

(
0 xh
−xh 0

)
, h = 1, · · · , 3,

a direct computation gives

L(A1, A2, A3) =


3∑

h=1

∂1X
2
hxh

1

2

3∑
h=1

(∂2X
2
h − ∂1X1

h)xh

1

2

3∑
h=1

(∂2X
2
h − ∂1X1

h)xh −
3∑

h=1

∂2X
1
hxh


so that a necessary condition for (X1, X2, X3) to be an effi cient risk sharing
reads:

det

 ∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X1

1 )
∂1X

2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X1

2 )
∂1X

2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X1

3 )

 = 0

The case H = 5, N = 2
Denoting for h = 1, · · · , 4, Xh = (X1

h, X
2
h) and performing similar com-

putations as before, we find that a necessary condition for (X1, X2, X3, X4)
to be an effi cient risk sharing reads:

0 = det

 ∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X1

1 )
∂1X

2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X1

2 )
∂1X

2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X1

3 )


= det

 ∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X1

1 )
∂1X

2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X1

2 )
∂1X

2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X1

4 )


= det

 ∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X1

1 )
∂1X

2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X1

3 )
∂1X

2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X1

4 )



= det


∂1X

2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X1

2 )
∂1X

2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X1

3 )
∂1X

2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X1

4 )

 .
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4 Identification

In the previous section, we have found necessary conditions on the Jacobian
matrices Fh(x) = DXh(x) for (X1, · · · , XH) to be a nondegenerate effi cient
risk-sharing. In this section, we address the identification issue: we assume
that x 7→ (X1(x), · · · , XH(x)) is a nondegenerate effi cient risk-sharing and
we wonder what information on the individual preferences and on the shadow
price can be deduced from this risk-sharing.

Given a nondegenerate effi cient risk-sharing (X1, · · · , XH) we wish to find
functions (maybe locally) Vh and V smooth and with nonsingular Hessians
such that

Xh = ∇V ∗h ◦ ∇V, h = 1, · · · , H.
By assumption,Xh can be written in such way, and the identification problem
consists in reconstructing the functions ∇Vh and ∇V from the knowledge of
Xh; this essentially is a uniqueness problem. The best one can hope is to
identify ∇Vh and ∇V up to a common translation (adding the same linear
function to the Vh’s does not affect the corresponding risk-sharing) and up
to a common multiplicative factor. In other words, what one can expect to
identify at best is the collection of Hessian matrices D2V and D2Vh up to a
multiplicative constant.

In general, one cannot expect an identification result, even for linear effi -
cient risk-sharing rules. In the linear risk-sharing case, DXh is a nonsingular
matrix and the identification problem consists in studying the uniqueness
(up to a multiplicative constant) of the decompostion Xh = ShS with Sh and
S symmetric. If Xh = αhIN (proportional risk sharing) the decomposition
is highly nonunique since S can be any symmetric nonsingular matrix and
Sh = αhS

−1. We do not have identification in this case and this is related
to the fact that under proportional risk-sharing, the map L defined by (8)
is identically 0. More generally, thanks to Lemma 1, we know that when
R(L) has a codimension larger than 2 then there is nonuniqueness of the
decomposition2 but we will see that when R(L) has codimension 1, there is
identification even in the nonlinear case.

In the previous section, the value of aggregate endowment x was somehow
frozen, it is now essential to let x vary and in particular to emphasize the

2Indeed, by assumption, one can write DXhσ = Sh where σ and Sh are symmetric and
nonsingular but since R(L) has codimension 2, by Lemma 1 there is a symmetric matrix σ̃
such σ and σ̃ are linearly independent and DXhσ̃ = S̃h ∈ SN . For small enough ε, σ+ εσ̃
is nonsingular and DXh = (Sh + εS̃h)(σ + εσ̃)−1 which proves that the decomposition is
highly nonunique.
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x-dependence of the map L defined in (8), from now on, we will therefore
denote this map by Lx.

4.1 Identification when R(Lx) has codimension 1

For all x ∈ RN , we of course assume the rank condition

rank(Lx) ≤
N(N + 1)

2
− 1 (9)

which we already know to be necessary for (Xh)h to be an effi cient risk-
sharing. Our aim is to identify the shadow price ∇V (and then the prefer-
ences) near a point x ∈ RN such that

rank(Lx) =
N(N + 1)

2
− 1 (10)

which implies that for every x in a neighbourhood U of x, the subspace
R(Lx) of SN has codimension one3 and thus an orthogonal of dimension 1.
For all x ∈ U , we may therefore find a symmetric (and nonsingular since
(X1, · · · , XH) is nondegenerate) matrix σ(x) such that:

R(Lx)
⊥ = Rσ(x), ∀x ∈ U . (11)

Moreover, thanks to condition (10), it is easy to see that we may choose
x 7→ σ(x) in such way that σ is C1 with respect to x.

Again denoting Fh = DXh, we know that there are smooth functions V ∗h
and V with nonsingular Hessians such that

Xh = ∇V ∗h ◦ ∇V hence Fh(x) = D2V ∗h (∇V (x))D2V (x)

for every x and we want to deduce as much information as we can from the
Xh’s to reconstruct ∇V and ∇Vh. It follows from Lemma 1 that D2V (x)−1

should belong to R(Lx)
⊥ = Rσ(x) so that setting T (x) := σ(x)−1, D2V (x)

should be of the form

D2V (x) = λ(x)T (x), x ∈ U

for some nonvanishing scalar function λ. In particular, by Schwarz’s sym-
metry theorem, in addition to the symmetry of T , one should have4

∂k(λ(x)Tij(x)) = ∂i(λ(x)Tkj(x)), ∀(i, j, k) ∈ {1, · · · , N}3

3We already noticed that this rank condition is necessary for identication.
4Since we have differentiated D2V here, we are assuming that V is at least C3.
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that is

∂kλ(x)Tij(x)− ∂iλ(x)Tkj(x) = λ(x)(∂iTkj(x)− ∂kTij(x)). (12)

To see that these equations enable to recover λ (hence D2V ) in a neigh-
bourhood of x up to a multiplicative constant, we shall use the following:

Lemma 3 Let T be an N × N symmetric and nonsingular matrix and let
(e1, · · · , eN) be the canonical basis of RN then the family {Tijek−Tkjei, i, j, k}
spans RN .

Proof. It is easy to see that the desired statement amounts to prove that
the linear map Π ∈ L(RN ,RN3

) defined by (Π(x))ijk = Tijxk − Tkjxi for all
x ∈ RN and all (i, j, k) ∈ {1, · · · , N}3 is injective. Let x be in the null space
of Π i.e.

Tijxk = Tkjxi, ∀i, j, k
multiply the previous by arbitrary reals αi and βj and sum over i and j to
get

〈Tα, β〉x = 〈α, x〉Tβ, ∀(α, β) ∈ RN × RN

taking α = x we thus get

〈Tx, β〉x = |x|2Tβ, ∀β ∈ RN

choosing β 6= 0 orthogonal to Tx, since Tβ 6= 0 we deduce that x = 0.

The following identification theorem follows:

Theorem 2 Let (X1, · · ·XH) be a nondegenerate effi cient risk-sharing such
that the rank condition (10) holds in a neighbourhood of x ∈ RN , then there
is local identification of shadow prices and preferences: one can deduce from
(X1, · · · , XH) the shadow price ∇V (x) (up to a multiplicative factor and an
additive constant) in a neighbourhood of x as well as the marginal utilities
∇Vh in a neighbourhood of Xh(x) (up to the same multiplicative and additive
constants).

Proof. Assume that Xh = ∇V ∗h ◦ ∇V then as already noted D2V (x) =
λ(x)T (x) where T (x) is a given SN -valued map and λ does not vanish and
should satisfy the system of linear PDEs (12) in U , which we simply rewrite
as

bα ·
∇λ
λ

= aα, α = (i, j, k), bα(x) = Tij(x)ek − Tkj(x)ei.
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It follows from Lemma 3 that the family {bα(x)}α spans RN for every x ∈ U
hence the system (12) contains as subsystem a system of the form

B(x)∇(log(λ)(x) = a(x)

for some B(x) ∈ GLN so that∇(log(λ)(x) = B(x)−1a(x) which means that λ
hence D2V (x) is determined up to a multiplicative constant and thus ∇V =
α0∇V0+p0 where V0 is totally determined (and has a nonsingular Hessian) by
the risk sharing and α0 ∈ R \ {0} and p0 ∈ RN are two constants. Once one
knows ∇V one easily obtains the desired identification of ∇Vh by observing
that Xh = ∇V ∗h ◦∇V can be rewritten as ∇Vh = ∇V ◦X−1h = α0∇V0◦X−1h +
p0.

The previous result is optimal: we already explained why the rank con-
dition is important and why the quantities that may be identified are ∇Vh
and ∇V up to multiplicative and additive constants.

4.2 The particular case H = 4, N = 2

We now restrict ourselves again to the simplest case H = 4, N = 2.

The linear case

Let us first consider the case of a linear risk sharing where Xh(x) = Fh × x
(x ∈ R2, h = 1, · · · , 3) and denote by f ijh the entries of the matrix Fh ∈M2.
We have seen in section 3 that a necessary condition for the Xh to be an
effi cient risk-sharing is that the matrix: f 211 f 212 f 213

−f 121 −f 122 −f 123
(f 221 − f 111 ) (f 222 − f 112 ) (f 223 − f 113 )


has zero determinant. Our goal is to find symmetric matrices σ and Sh such
that Fhσ = Sh and we have seen that to identify the matrix σ up to a constant
we further need that this matrix has rank 2, for instance, we assume that its
first two columns are linearly independent. The computation of σ is explicit5

5It is convenient to identify S2 with R3 by identifying the vector (a, b, c) with the

symmetric matrix

(
a b√

2
b√
2

c

)
, this isomorphism has the advantage to preserve the inner

product hence orthogonality, to find a matrix in R(L)⊥ we simply take the wedge product
of the first two columns of its matrix in the canonical basis of R3.
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and gives

σ =

−f 121 (f 222 − f 112 ) + f 122 (f 221 − f 111 ) −f 211 f 122 + f 121 f
21
2

−f 211 f 122 + f 121 f
21
2 −f 211 (f 222 − f 112 ) + f 212 (f 221 − f 111 )


(13)

and this matrix is invertible as soon as the Xh is a nondegenerate effi cient
risk-sharing.

The nonlinear case

In the nonlinear case, denote by Fh(x) := DXh(x), the same computations
as before give a matrix σ(x) which spans R(Lx)

⊥, it is the same as in (13)
except that we now understand the entries as f ijh (x) := ∂jX

i
h(x). An explicit

matrix T (x) that is proportional to σ(x)−1 is then given by

T11 = −∂1X2
1 (∂2X

2
2 − ∂1X1

2 ) + ∂1X
2
2 (∂2X

2
1 − ∂1X1

1 )

T12 = ∂1X
2
1∂2X

1
2 − ∂2X1

1∂1X
2
2

T22 = −∂2X1
1 (∂2X

2
2 − ∂1X1

2 ) + ∂2X
1
2 (∂2X

2
1 − ∂1X1

1 ).

We wish now to identify D2V which is of the form λ(x)T (x) and the fact
that λT is a Hessian field gives the system of two PDEs:

T12∂1λ− T11∂2λ = λ(∂2T11 − ∂1T12)
T22∂1λ− T12∂2λ = λ(∂2T12 − ∂1T22)

which we can rewrite as

∇λ
λ

=

(
F1(DX,D

2X)
F2(DX,D

2X)

)
where(

F1(DX,D
2X)

F2(DX,D
2X)

)
:=

(
T12 −T11
T22 −T12

)−1(
∂2T11 − ∂1T12
∂2T12 − ∂1T22

)
=

1

det(T )

(
−T12(∂2T11 − ∂1T12) + T11(∂2T12 − ∂1T22)
−T22(∂2T11 − ∂1T12) + T12(∂2T12 − ∂1T22)

)
We now wish to emphasize the fact that since the previous vector field is
a gradient, we have an additional third-order nonlinear PDE for (X1, X2),
namely

∂2F1(DX,D
2X) = ∂1F2(DX,D

2X)

13



this supplementary equation is another necessary condition for effi cient risk-
sharing.
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